Chapter 2 Sentential Logic: Proofs

 $1,2 \lor E$

20

ampersand-intro	Given two sentences (at lines <i>m</i> and <i>n</i>), conclude a conjunction of them.			
Annotation:	<i>m,n</i> &I			
Assumption set:	The union of the assumption sets at lines <i>m</i> and <i>n</i> .			
Comment:	The order of lines m and n in the proof is irrelevant. The lines referred to by m and n may also be the same (i.e., it is allowed that $m = n$).			
Also known as:	Conjunction (CONJ).			
	Examples.			
	1	(1)	Р	А
	2	(2)	Q	А
	1,2	(3)	P & Q	1,2 &I
	1,2	(4)	Q & P	1,2 &I
	1	(5)	P & P	1,1 &I
wedge-elim	Given a sentence (at line m) that is a disjunction and another sentence (at line n) that is a denial of one of its disjuncts, conclude the other disjunct.			
Annotation:	$m,n \lor \mathbf{E}$			
Assumption set:	The union of the assumption sets at lines <i>m</i> and <i>n</i> .			
Comment:	The order of <i>m</i> and <i>n</i> in the proof is irrelevant.			
Also known as:	Modus Tollendo Ponens (MTP), Disjunctive Syllogism (DS).			
	Examples.			
	(a)			
	1	(1)	$\mathbf{P}\vee\mathbf{Q}$	А
	2	(2)	$\sim P$	А

(3) Q

1,2