2.3 Theorems 33

*S63
$$(P \to Q) \to R, S \to (\sim Q \to T) \vdash R \lor \sim T \to (S \to R)$$
*S64 $(P \to Q) \& (R \to P), (P \lor R) \& \sim (Q \& R) \vdash (P \& Q) \& \sim R$
S65 $P \& Q \to (R \lor S) \& \sim (R \& S), R \& Q \to S,$
 $S \to ((R \& Q) \lor (\sim R \& \sim Q)) \lor \sim P \vdash P \to \sim Q$
S66 $\sim (P \& \sim Q) \lor \sim (\sim R \& \sim S),$
 $\sim S \& \sim Q, T \to (\sim S \to \sim R \& P) \vdash \sim T$
*S67 $P \& Q \to R \lor S \vdash (P \to R) \lor (Q \to S)$
*S68 $P \& Q \to (R \lor S) \& \sim (R \& S), R \& Q \to S,$
 $S \to ((R \& Q) \lor (\sim R \& \sim Q)) \lor \sim P \vdash P \to \sim Q$
S69 $(P \to Q) \to (Q \to P) \vdash (P \to Q) \to (\sim P \to \sim Q)$

2.3 Theorems

Theorem

Definition. A **THEOREM** is a sentence that can be proved from the empty set of premises.

Comment. We can assert that a given sentence is a theorem by presenting it as the conclusion of a sequent with nothing to the left of the turnstile.

Example.

Prove \vdash P & Q \rightarrow Q & P.

1 (1) P & Q A

1 (2) Q 1 & E

1 (3) P 1 & E

1 (4) Q & P 2,3 & I

(5) P & Q \rightarrow Q & P 4 \rightarrow I (1)

Comment. Note that in step 5 we discharge assumption 1. Hence, the final conclusion rests on no assumptions (i.e., the assumption-set is the empty set).